
BEARTM Operation and SDK Manual

Westwood Robotics R© Corporation

v 0.3.3
c© 2018 ∼ 2024 Westwood Robotics

All Rights Reserved

1

Contents
1 Introduction 3

1.1 About This Manual . 3
1.2 Warnings . 4
1.3 Know Your BEAR . 5

2 Using BEAR 12
2.1 Power & Signal . 12
2.2 Communication . 16

2.2.1 Control Table . 16
2.2.2 Detailed Description . 18
2.2.3 Error Code . 19

2.3 Operating Modes . 20
2.4 PID Tunning . 23

3 SDK 25
3.1 PyBEAR . 25
3.2 LabBEAR . 32

4 Version History 39

2

1 Introduction

1.1 About This Manual

• Type of a data is enclosed with “<>”. For example, <list>is a data type in Python.

• BEAR is also referred to as BEAR motors, BEAR actuators or BEAR modules.

• CAUTION labels contain advises and instructions that, if not properly followed, can possibly
lead to damage or malfunction on your BEARs.

This is an example of CAUTION label.
CAUTION labels contain advice and instructions that, if not properly followed, can
possibly lead to damage or malfunction on your BEARs.

CAUTION

• WARNING labels contain restrictions and instructions that, if not properly followed, will defi-
nitely lead to severe damage on your BEARs, and can result in dangerous situations.

This is an example of WARNING label.
WARNING labels contain restrictions and instructions that, if not properly followed,
will definitely lead to severe damage on your BEARs, and can result in dangerous
situations.

WARNING

3

1.2 Warnings

To avoid structural deformation, please NEVER clamp your BEAR from the side.

WARNING

To avoid leakage, please do not loosen or tighten the screws on the cooling channel cap or
disassemble the cooling channel cap. The gasket must be replaced once disassembled.

WARNING

In Direct Force Mode, the output speed of BEAR is not limited by the limit velocity max
setting.

WARNING

Pay extra attention when changing mode while BEAR is enabled. BEAR will remain enabled
and execute the corresponding goal xxx setting in the new mode immediately.

WARNING

Do not save configurations when the motor is enabled. The motor may not respond when it
is writing flash memory.

WARNING

4

1.3 Know Your BEAR

a) Feature Overview
For convenience and comparison, basic mechanical, electrical and performance properties
of all current available BEAR products are listed in Table. 1 and 2 as below.

Property Koala BEAR Koala BEAR Muscle Build
Current Version KB02 KBMB01
Weight 250g 285g
Supply Voltage 9 ∼ 33.6V (3 ∼ 8S)
Power Connector XT30
Signal Connector Molex PicoBlade 53047 6Pin
Reflected Inertia 1.82× 10−3 kg/m2

Speed Constant KV 27.3 RPM/V 9 RPM/V
Torque Constant KT 0.35 Nm/A 1.16 Nm/A
Stall Torque 15sec 3.5 Nm 8 Nm
Stall Torque 15sec(LC) 4.2 Nm N.A.2

Stall Torque 1.5sec 10.5 Nm 20 Nm

Table 1: Koala Series Specification1

Property Panda BEAR Panda BEAR Plus Kodiak BEAR
Current Version PB02 PB02P CB01
Weight 685g 925g 2500g
Supply Voltage 9 ∼ 50.4V (3 ∼ 12S)
Power Connector XT60 XT90
Signal Connector Molex PicoBlade 53047 6Pin
Reflected Inertia 7.44× 10−3 kg/m2

Speed Constant KV 14.3 RPM/V 7.1 RPM/V
Torque Constant KT 0.67 Nm/A 1.3 Nm/A
Stall Torque 15sec 13.4 Nm 26.5 Nm 180 Nm
Stall Torque 15sec(LC) 16.8 Nm 33 Nm 240 Nm
Stall Torque 1.5sec 33.5 Nm 67 Nm ≥ 350 Nm

Table 2: Panda and Kodiak Series Specification1

b) Koala BEAR
TM

V2 (KB02)
Koala BEAR V2(KB02) is a small actuator designed for highly dynamic applications with rel-
atively low loads, such as all kinds of small mobile robots, robot hands or robot manipulators.
The mechanical and electrical as well as the thermal management features are introduced
as following, with the help of figure 1.

• Mechanical Features The dimensions and locations of mounting features are anno-
1Stall Torque is the maximum torque BEAR can deliver under given time period, while temperature rise is within 55◦C;

LC stands for Liquid Cooled.
2Liquid cooling option is not available on KBMB01.

5

Figure 1: Koala BEAR V2 Specs

tated as in figure 1. There are six M3 screw holes and six 3mm pin holes on the output
shaft for locating and connecting the payload. The eight M2.5 screw holes, four 2.5mm
pin holes located on the front side as well as the four M3 screw holes and four 2mm
pin holes on three sides can all be used to locate and mount KB02 to its application.
Besides, there are also four M3 screw holes on the back that are axisymmetric about
the output shaft, and these four M3 screw holes can also be used as mounting points
or to mount additional bearings under certain application.

Please refer to Table. 1 for overall mechanical and performance properties of KB02.

When high axial load is expected at the application joint, additional axial support
is required instead of directly use Koala BEAR for the axial support on the joint.

CAUTION

• Electrical Features KB02 has one XT30 power port, and two Molex PicoBlade 53047
6Pin signal ports. The two signal ports make it convenient to connect multiple BEAR
modules in serial. Power supply voltage for KB02 ranges from 9V to 33.6V.

6

When driving the load dynamically, a non-negligible back EMF will be generated
by BEAR upon back-drive motions or impacts. In such applications, it is highly
recommended to use Li-Po batteries as power supply or add a back-EFM absorb-
ing circuit with significant capacitance to the power supply circuit to protect the
power supply.

CAUTION

• Liquid Cooling The headers of the liquid cooling channel on KB02 are push-to-connect
headers for 4mm OD tubes. The applied coolant pressure in the cooling channel can
be up to 1MPa. It is recommended to use DI water mixed with appropriate amount of
biological inhibitors as coolant. It is not recommended to add other additives or dyes
into the coolant.

. To prevent damage to the circuit from coolant leakage, please apply/replace
PTFE sealant tape on the thread of the cooling channel headers before attaching
them onto your BEAR and check for leakage carefully.

CAUTION

Refrain from using Copper (II) Sulphate (CuSO4) additive – common trade name
“Nuke Cu” or “Biocide Cu” – due to its tendency to react with metals usually found
in the liquid cooling loop, especially radiators (Zn, Cu, Sn) as well as BEAR (Al)
thus promoting corrosion. Using CuSO4 also accelerates visually discouraging
copper tarnishing phenomena.

CAUTION

In the case of regularly liquid cooled applications, please check for leakage in the
liquid cooling loop at least weekly.

CAUTION

To avoid leakage, please do not loosen or tighten the screws on the cooling chan-
nel cap or disassemble the cooling channel cap. The gasket must be replaced
once disassembled.

WARNING

7

c) Koala BEAR
TM

Muscle Build V1 (KBMB01)
Koala BEAR Muscle Build V1(KBMB01) is the strongest actuator in the Koala Series. It
remains the same compact and extra-low weight design of Koala Series, but offers as high
as 3 times the torque of standard Koala BEAR V2. It is ideal for dynamic applications that
are very restrict on size and weigh, while prefer higher load capacity than high speed, such
as wearable robotic devices, rehabilitation robots and devices, robot hands or table-top robot
manipulators. Liquid cooling is not available on KBMB01.

The mechanical and electrical as well as the thermal management features are introduced
as following, with the help of figure 2.

Figure 2: Koala BEAR Muscle Build V1 Specs

• Mechanical Features The dimensions and locations of mounting features are anno-
tated as in figure 2. There are six M4 screw holes and three 3mm pin holes on the
output shaft for locating and connecting the payload.

The six M3 screw holes, six 2mm pin holes located on the front side as well as the
four M3 screw holes and four 2mm pin holes on two sides can all be used to locate
and mount KBMB01 to its application. Besides, there are also six M3 screw holes on
the back that are axisymmetric about the output shaft, and these six M3 screw holes
can also be used as mounting points or to mount additional bearings under certain
application.

Please refer to Table. 1 for overall mechanical and performance properties of KBMB01.

8

When high axial load is expected at the application joint, additional axial support
is required instead of directly use Koala BEAR for the axial support on the joint.

CAUTION

• Electrical Features KBMB01 has one XT30 power port, and two Molex PicoBlade
53047 6Pin signal ports. The two signal ports make it convenient to connect multiple
BEAR modules in serial. Power supply voltage for KB02 ranges from 9V to 33.6V.

When driving the load dynamically, a non-negligible back EMF will be generated
by BEAR upon back-drive motions or impacts. In such applications, it is highly
recommended to use Li-Po batteries as power supply or add a back-EFM absorb-
ing circuit with significant capacitance to the power supply circuit to protect the
power supply.

CAUTION

• Liquid Cooling Liquid cooling is not an option for KBMB01.

d) Panda BEAR
TM

V2 (PB02) and Panda BEAR
TM

Plus V2 (PB02P)
With the right balance of torque, weight, and form factor, Panda BEAR V2(PB02) and Panda
BEAR Plus V2(PB02P) are our most versatile units. Their excellent dynamic performance
and payload capability make them well suited for diverse applications ranging from legged
mobile robots to service and entertainment robots. Both PB02 and PB02P share identical
mechanical, electrical, and thermal management features, as detailed in the following, with
the help of figure 3.

• Mechanical Features The dimensions and locations of mounting features are anno-
tated as in figure 3. There are eight M3 screw holes and eight 3mm pin holes on the
output shaft for locating and connecting the payload. The eight M3 screw holes and
3mm pin holes located on the front side as well as the six M3 screw holes and six 2mm
pin holes on each of the three sides can all be used to locate and mount PB02 to its
application. Besides, there are also eight M3 screw holes on the back that are axisym-
metric about the output shaft, and these eight M3 screw holes can also be used as
mounting points or to mount additional bearings under certain application.

When high axial load is expected at the application joint, additional axial support
is required instead of directly use Panda BEAR for the axial support on the joint.

CAUTION

Please refer to Table. 2 for overall mechanical and performance properties of PB02.

• Electrical Features PB02 has one XT60 power port, and two Molex PicoBlade 53047
6Pin signal ports. Pry open the back cap to access the signal ports, as instructed in
figure 4. The two signal ports make it convenient to connect multiple BEAR modules in
serial. Power supply voltage for PB02 ranges from 9V to 48V.

9

Figure 3: Panda BEAR V2 Specs

Figure 4: Panda BEAR Signal Ports

When driving the load dynamically, a non-negligible back EMF will be generated
by BEAR upon back-drive motions or impacts. In such applications, it is highly
recommended to use Li-Po batteries as power supply or add a back-EFM absorb-
ing circuit with significant capacitance to the power supply circuit to protect the
power supply.

CAUTION

10

• Liquid Cooling The headers of the liquid cooling channel on PB02 are push-to-connect
headers for 4mm OD tubes. The applied coolant pressure in the cooling channel can
be up to 1MPa, but it is recommended to regulate your coolant pressure under 0.7MPa
if your system’s coolant is pressurized at all time. It is recommended to use DI water
mixed with appropriate amount of biological inhibitors as coolant. It is not recommended
to add other additives or dyes into the coolant.

. To prevent damage to the circuit from coolant leakage, please apply/replace
PTFE sealant tape on the thread of the cooling channel headers before attaching
them onto your BEAR and check for leakage carefully.

CAUTION

Refrain from using Copper (II) Sulphate (CuSO4) additive – common trade name
“Nuke Cu” or “Biocide Cu” – due to its tendency to react with metals usually found
in the liquid cooling loop, especially radiators (Zn, Cu, Sn) as well as BEAR (Al)
thus promoting corrosion. Using CuSO4 also accelerates visually discouraging
copper tarnishing phenomena.

CAUTION

In the case of regularly liquid cooled applications, please check for leakage in the
liquid cooling loop at least weekly.

CAUTION

To avoid leakage, please do not loosen or tighten the screws on the front cap or
disassemble the front cap. The gasket inside must be replaced once disassem-
bled.

WARNING

e) Kodiak BEAR
TM

V1 (CB01)
Kodiak BEAR V1(CB01) is our strongest line-up specifically built to provide maximum torque
for big applications ranging from walking humanoids to industrial manipulators, while main-
tain agile torque sensing and control capabilities.

CAD models, mechanical, electrical, and thermal management features of CB01 are avail-
able for existing customers of Kodiak BEAR actuator. Contact us for these files once your
purchase is complete.

11

2 Using BEAR

2.1 Power & Signal

a) Power
The power port on Koala Series is a male XT30 connector, the power port on Panda Series
is a male XT60 connector, and XT90 male connector on Kokdiak. The power port polarity
follows the regular convention of XT30/XT60/XT90 connectors: the pole near flat side is
positive and the pole near the rounded/chamfered side is ground, as shown in fig. 5

Figure 5: BEAR power connector and polarity

Be cautious and never reverse power polarity.

WARNING

Power supply voltage for different BEARs are as listed in Table. 3. Connect BEARs getting
same voltage in parallel when using multiple BEARs.

To avoid fire hazard, please estimate nominal current consumption on each BEAR
when chaining multiple BEAR in parallel and select power cable with appropriate AWG,
especially higher current consumption is expected.

WARNING

Product Series Koala Panda Kodiak
Supply Voltage 9 ∼ 33.6V (3 ∼ 8S) 9 ∼ 50.4V (3 ∼ 12S) 9 ∼ 50.4V (3 ∼ 12S)
Connector XT30 XT60 XT90

Table 3: BEAR Power Supply Specs

b) Indicator
Each BEAR has an LED indicator on the back side. There are three(3) LEDs with different
colors on the indicator that indicates the status of the actuator: Grean, Blue and Red.

The Grean light comes on once BEAR is powered and initialization is complete; The Blue
LED lights up as soon as the torque output is enabled, and turns off once disabled; The Red
light indicates an existing Error.

c) USB2BEAR
It is recommended to use Westwood Robotics USB2BEAR

TM
high speed RS485 USB dangle

to connect BEARs to your computer.

12

Use at own risk when using other generic RS485 dangles.

CAUTION

The USB2BEAR dangle is a USB2.0 device and its RS485 connector is a 4-pin Molex Mini-
SPOX 5268 male header. (Mating female housing: 4-pin Molex Mini-SPOX 5264, part num-
ber: 0050375043) It’s pin-out and function of the switches are as shown in fig. 6.

Figure 6: USB2BEAR pin-out and switches.

It is recommended to add a terminal resister of 120 Ohms at the end of RS485 chain when
using long signal cables and the impedance of the signal line is high enough to result in noisy
communication. Put the Terminal Resister Switch at ’ON’ when a terminal resister is applied
at the end of the chain, but be sure to have it at ’OFF’ when no terminal resister is applied
at the end of the chain. USB2BEAR can also be used to communicate with generic RS485
devices other than BEAR. Make sure the matching communication Baud Rate is selected. It
is recommended to use 8Mbps for fast communication when paired with BEARs.

d) Chaining BEAR Signal Ports
When having multiple BEARs in your system, properly chaining their signal lines not only
can make your wire management easy and clean, but also contribute to system reliability
and robustness. Just like all other RS485 devices, you can simply chain your BEARs in a
daisy chain, as shown in fig. 7. It is recommended to add a terminal resistor of 120 Ohm
at the end of the signal chain, especially when the signal line is relatively long or whenever
exceptional signal noise is observed.

There could also be multiple chains of BEARs, such as in the application of dual-arm ma-
nipulators or legged robots. In this type of situation, traditional solutions are either using a
long signal cable to connect the end of one chain with the start of another, or using multiple
RS485 adapters, one for each chain. The former solution could lead to high impedance in
the signal line thus noisy communication, while the latter could result in control complication
and a demand of too many USB ports on the controller.

In the above situations, the unique pass-thru channels on all BEAR signal ports become very
handy. Fig. 8 illustrates a simple example of using the pass-thru channels to achieve a fork
chain. Again, it is recommended to add a terminal resistor of 120 Ohm at the end of the
signal chain, especially when the signal line is relatively long or whenever exceptional signal
noise is observed.

13

Figure 7: Daisy chain BEARs.

Figure 8: Fork chain BEARs.

It is fine to chain different type of BEARs together, but be careful to make sure that all BEARs
get the correct power supply voltage. All BEARs in the same chain should have the same
baud rate setting, and there is no ID conflict as well.

e) Connect to USB2BEAR
There are three ways of connecting the signal line from BEARs to the USB2BEAR dangle,
as shown in fig. 9. The GND, A and B terminals are always connected to corresponding
pins on the USB2BEAR dangle, and the only difference between these three configurations
is how the ESTOP signal terminal is handled. The minimum connection is to connect the E-
STOP terminal to signal GND, but doing this will eliminate the function of E-STOP protection
thus depreciated. A basic configuration which adds a E-STOP switch between the ESTOP
and the signal GND terminal is preferred over the minimum configuration. Disconnecting the
ESTOP terminal from the signal GND terminal via the E-STOP switch triggers the E-STOP
protection on all connected BEARs.

Our recommended configuration is to connect the GND and ESTOP terminal to a Westwood
Robotics Wireless ESTOP module, which enables the user to trigger the E-STOP protection

14

on all connected BEARs remotely, which we consider to be an extremely important safety
feature for high power or high complicity systems, or any system that works around a human.

Please refer to section. f) for detailed explanation on E-STOP protection.

Figure 9: Connecting BEARs to USB2BEAR.

Do NOT leave the ESTOP terminal floating, as this keeps BEARs in their ESTOP status
and prevents them from being enabled.

CAUTION

f) E-STOP
When the ESTOP terminal on a BEAR is not pulled low to signal GND, the BEAR module’s
E-STOP protection will be triggered. The 3rd bit of its error code will be come HIGH and
the torque enable status will become 3. If the E-STOP protection is triggered while BEAR is
enabled, such BEAR will go into hardware damping mode preventing any potential damage;
if the E-STOP protection is triggered while BEAR is disabled, such BEAR will stay disabled
and will not enter hardware damping mode.

The E-STOP protection can also be triggered by writing ”3” to the torque enable status reg-
ister and does not necessarily require the ESTOP terminal to be disconnected from signal
GND.

To release a BEAR from its E-STOP protection, first make sure that the ESTOP terminal is
pulled low to signal GND, then disable the BEAR by writing ”0” to its torque enable status
register. This will also reset the 3rd bit of its error code to LOW.

Refer to section. 2.2.2 for details on torque enable status register and section. 2.2.3 for details
on error code.

15

2.2 Communication

Communication with BEAR is achieved by using BEAR SDK to interact with the Control Table.
The Control Table is a structure that consists of multiple Registers to store status or to control the
device. Users can check current status of the device by reading from specific Registers in the
Control Table, or to control the device by writing specific data to some Registers.

The Control Table is explained in detail in this section as following. Please refer to Section. 3 for
complete instruction of using BEAR SDK of various languages to interact with the Control Table.

2.2.1 Control Table

All Registers in the Control Table are divided into two groups: Configuration Registers(CONFIG)
and Status Registers(STAT). All values in the Configuration Registers will be saved in the flash
memory when “save config” command is received by BEAR. All values in status registers and
all unsaved configuration registers will be lost when power-off and reset to default or last-save at
power-on.

Do not save configurations when the motor is enabled. The motor may not respond when it
is writing flash memory.

WARNING

It is recommended to save config only when necessary. Internal flash guaranteed endurance
is 10K write cycle.

CAUTION

Please refer to Table. 4 for complete lists of CONFIG and STAT Registers.

16

Configuration Registers
Name Description Access Type Unit Default Min Max
id Unique motor ID R/W uint32 1 0 0xFC
mode R/W uint32
baudrate R/W uint32 Mbps
homing offset R/W float32 rad
p gain id P gain for Id current loop R/W float32 0.001 0 10
i gain id I gain for Id current loop R/W float32 0.0001 0 10
d gain id D gain for Id current loop R/W float32 0 0 10
p gain iq P gain for Iq current loop R/W float32 0.001 0 10
i gain iq I gain for Iq current loop R/W float32 0.0001 0 10
d gain iq D gain for Iq current loop R/W float32 0 0 10
p gain velocity P gain for velocity loop R/W float32 0.2 0 1000
i gain velocity I gain for velocity loop R/W float32 0.001 0 1000
d gain velocity D gain for velocity loop R/W float32 0 0 1000
p gain position P gain for position loop R/W float32 0.01 0 1000
i gain position I gain for position loop R/W float32 2E-05 0 1000
d gain position D gain for position loop R/W float32 0 0 1000
p gain direct force P gain for direct force loop R/W float32 0 0 1000
i gain direct force I gain for direct force loop R/W float32 0 0 1000
d gain direct force D gain for direct force loop R/W float32 0 0 1000
limit acc max Maximum Acceleration R/W float32 rad/s2 5 0 100000
limit i max Maximum Iq (torque) and Id R/W float32 A 5 0 100
limit velocity max Maximum absolute velocity R/W float32 rad/s 100 0 10000
limit position min Position limit min. R/W float32 rad -8π -8π 8π
limit position max Position limit max. R/W float32 rad 8π -8π 8π
min voltage R/W float32 V 6 6 60
max voltage R/W float32 V 40 6 60
watchdog timeout R/W uint32 µs 0 0 10000000
temp limit low Limit power at this temperature R/W float32 ◦C 80 0 125
temp limit high Shutdown at this temperature R/W float32 ◦C 100 0 125

Status Registers
Name Description Access Type Unit Default Min Max
torque enable Enable output R/W uint32 0 0 3
goal id Goal Excitation Current R/W float32 A
goal iq Goal Torque Current R/W float32 A
goal velocity - R/W float32 rad/s
goal position - R/W float32 rad -8π 8π
present id Present Excitation Current RO float32 A
present iq Present Torque Current RO float32 A
present velocity Present velocity RO float32 rad/s
present position Present position RO float32 rad -8π 8π
input voltage Present input voltage RO float32 V
winding temperature Winding temperature in ◦C RO float32
powerstage temperature Powerstage temperature in ◦C RO float32
ic temperature IC temperature in ◦C RO float32
error status *Not implemented yet RO float32

*R/W: read and write RO: read only

Table 4: Table of Registers

17

2.2.2 Detailed Description

Config Registers

• id The ID of a BEAR. This should be unique for every BEAR in the same chain.

• mode Operating mode. Refer to Section. 2.3 for detailed explanation.

• baudrate Baud-rate for the RS-485 communication. Unless needed by system setup, it is
recommended to leave it at default 8Mbps.

• homing offset present position = raw position + homing offset. When setting up new hom-
ing offset, always take the existing homing offset into account.

• PID Gains Refer to Section. 2.4 for more details.

• limit acc max Absolute maximum limit for acceleration (unit: rad/s2). Effective in mode 2
(position mode) for trajectory generation.

• limit i max Absolute maximum limit for torque current Iq and excitation current Id (unit: A).
Effective in all modes. Since Iq is proportional to torque, this is effectively the torque limit.

• limit velocity max Absolute maximum limit for velocity (unit: rad/s). Effective in modes
1(Velocity) and 2(Position).

• limit position min/max Lower/upper position limit for BEAR (unit: rad). Going out of bounds
triggers internal damping mode and generates an error. Disable, then bring motor within limit
physically or by limit adjustment clears the error. Effective in modes 2(Position) and 3(Direct
Force).

• min/max voltage When voltage goes below min voltage or above max voltage , hardware
fault triggers with an error generated. Disable, then regulate the supply voltage within limits
clears the error.

• watchdog timeout Safety watchdog timeout value in micro seconds(µs). When communi-
cation times out, BEAR goes into internal damping mode and generates an error. Disable
clears the error. This ONLY applys to modes 0(torque).

• temp limit low From this temperature(◦C) to temp limit high, the Iq limit will start to decrease
linearly from limit i max, and an error will be generated.

• temp limit high From this temperature(◦C) above, the Iq limit will be reduced to 0. The tem-
perature limit functionality uses the maximum between Winding temperature and Powerstage
temperature.

Status Registers

• torque enable Enable status and control of BEAR.
When write:
0 - Disable BEAR, also clear latching errors;
1 - Enable BEAR torque output;
3 - EStop protection triggered. If motor was enabled, motor goes into safe damping mode.
When read:

18

0 - BEAR disabled
1 - BEAR enabled
2 - BEAR disabled and critical error preventing enabling the motor
3 - BEAR in safe damping mode due to non-critical error.

• goal id Reference excitation current Id input. Leave it at 0 for normal operation.

• goal iq Reference torque current Iq (unit: A). Can be written to when BEAR is in mode 0 and
3. Iq is roughly proportional to the output torque.

• goal velocity Reference velocity (unit: rad/s). Can only be written to when BEAR is in mode
1.

• goal position Reference position (unit: rad). Can be written to when BEAR is in mode 2 and
3.

• present id/iq/velocity/position Present status value of BEAR. Read only.

• input voltage Present power supply voltage to BEAR (unit: V). Read only.

• winding temperature Winding temperature reading (unit: ◦C).

• powerstage temperature MOSFETs temperature reading (unit: ◦C).

• ic temperature Temperature reading (unit: ◦C) of the micro controllers.

2.2.3 Error Code

A BEAR will always return its present error status by returning an 8-bit error code together with
every returned data. The highest bit of the error code is always 1. Refer to table. 5 for detailed
explanation of every bit in the error code.

bit Type Name Note
0 Warning Communication
1 Warning Overheat
2 Error Absolute Position
3 Error Watchdog Timeout & ESTOP
4 Error Joint Limit
5 Error Hardware Fault
6 Error Initialization Error
7 1 Always 1

Table 5: Table of Error Code (little-endian)

19

Detailed Description

• Communication A corrupted data packet was received. This warning resets automatically
and is only associated with corresponding round of communication.

• Overheat The temperature of at least one component among IC, powerstage and winding
in this BEAR has exceeded the value written to temperature limit low. This warning resets
automatically when the temperature limit low value is higher than the highest temperature
measured in this BEAR module.

• Absolute Position Absolute position reading error.

• Watchdog Timeout & ESTOP When in mode 0(torque mode), motor enabled and watchdog
timer configured, watchdog timeout triggers this error.

External ESTOP signals also triggers this error. Including physical signal and writing 0x03 to
torque enable.

• Joint Limit Joint limit exceeded.

• Hardware Fault Input voltage out of range or MOSFET driver fault.

• Initialization Error Corrupted save file in flash, calibration needed.

2.3 Operating Modes

BEAR actuator can run in the following four different modes:

Pay extra attention when changing mode while BEAR is enabled. BEAR will remain enabled
and execute the corresponding goal xxx setting in the new mode immediately.

WARNING

0 - Torque Mode
The torque current(iq) in BEAR is directly controlled in this mode. Control commands in-
structing the torque current iq is written to status register goal iq, and the unit of the input is
Amps. BEAR tracks goal Iq and goal Id using PID gains for Iq and Id.

The output torque T can be roughly estimated using the torque current iq and the torque
constant KT of the BEAR module as shown in Eq. 1:

T = iq × KT (1)

When the current command goal iq is higher than the limit i max setting, the BEAR
module will not execute the command.

CAUTION

20

The actual maximum torque of BEAR is limited by the maximum current the power
supply can provide as well as the limit i max setting.

CAUTION

1 - Velocity Mode
The output speed of BEAR is directly controlled by user input via status register goal velocity.
The unit of the input is rad/s. BEAR tracks goal velocity using PID gains for velocity loop, and
the PID output feeds into Iq.

When the speed command goal velocity is higher than the limit velocity max setting,
the BEAR module will not execute the command.

CAUTION

The actual maximum speed of BEAR is limited by the supply voltage and the maximum
speed it can achieve under the given load conditions; The actual maximum torque of
BEAR is limited by the maximum current the power supply can provide as well as the
limit i max setting.

CAUTION

2 - Position Mode
The output position of BEAR is directly controlled by user input via status register goal position.
The unit of the input is rad. BEAR tracks goal position using PID gains for position loop, and
the PID output feeds into velocity.

When the position command goal position is out of the range defined by the settings in
limit position max and limit position min, the BEAR module will not execute the com-
mand.

CAUTION

The actual output speed of BEAR is limited by the supply voltage and the maximum
speed it can achieve under the given load conditions as well as the limit velocity max
setting; The actual maximum torque of BEAR is limited by the maximum current the
power supply can provide and the limit i max setting.

CAUTION

21

3 - Direct Force Mode
In this mode, BEAR tracks goal position and velocity using PID gains, in addition to goal Iq. In
another word, user can use this mode to command BEAR to track a trajectory that contains
all of position, velocity and torque data. The diagram in fig. 10 shows how the signals are
mixed internally.

Figure 10: Direct Force Mode Diagram.

When the speed command goal velocity is higher than the limit velocity max setting,
or the goal iq is higher than the limit i max setting, the BEAR module will not execute
the command.
BEAR will still execute the command even if goal position is out of the range defined
by limit position max and limit position min in this particular mode.

CAUTION

The actual output speed of BEAR is ONLY limited by the supply voltage and the maxi-
mum speed it can achieve under the given load conditions; The actual maximum torque
of BEAR is limited by the maximum current the power supply can provide and the
limit i max setting.

CAUTION

In Direct Force Mode, the output speed of BEAR is not limited by the limit velocity max
setting.

WARNING

22

2.4 PID Tunning

It is very important for the PID gains to be well tuned for a BEAR to function as desired, and there
can be multiple sets of PID gains that need to be tuned to suit a BEAR into it’s designated tasks,
depending on the BEAR’s operating mode.

0 - Torque Mode
Only the iq and id loops are involved in this mode, thus only the PID gains of these two
loops need to be tuned. The PID gains of iq and id loops should always be the same in
normal operation, thus there is actually only one set of PID gains to be tuned when BEAR is
operating in this mode.

It is recommended to start with the settings as specified in table. 6 which should work just
fine for most applications.

BEAR P Gain I Gain D Gain
Koala V2 0.277 0.061 0
Koala Muscle Build V1 0.358 0.045 0
Panda V2 0.099 0.039 0
Panda Plus V2 0.184 0.065 0
Kodiak V1 0.25 0.017 0

Table 6: Table of Current Loop Gains

BEAR with correct id/iq PID gains shows great id/iq tracking and maintains relative low noise
on both current loops. The P gain and I gain should not deviate from the above by a sig-
nificant amount even when further tuning is needed, however, in some applications where
exceptional noise is seen in the current loops, you can try scaling down these P gain and I
gain settings, and the D gain should be kept at zero(0) all the time.

1 - Velocity Mode
When operating in Velocity Mode, the velocity PID loop result feeds to iq loop, thus the
velocity PID gains are tuned on top of correct id/iq PID gains. See previous sector for how to
tune the id/iq PID gains correctly.

While the actual settings could vary depending on the application and desired dynamic per-
formance, it is recommended to start with the following settings:

Velocity P = 0.5 ∼ 1, I = 0, D = 0

A very small (0 ∼ 0.001) I gain may be needed depending on the application, but it is
recommended to keep the D gain at zero(0).

BEAR with correct id/iq PID gains and well tuned velocity PID gains shows good velocity
tracking performance.

2 - Position Mode
Getting the correct PID settings for BEAR to run dynamically and accurately in Position Mode
can be a little challenging, but it is simple and straight forward once it is tuned step by step
in the correct sequence.

23

When in Position Mode, the position PID loop result feeds to velocity loop, and then the
velocity PID loop result feeds to iq loop, thus all PID gains of the id/iq loop, velocity loop
and position loop need to be correct. Therefore, a fairly reliable set of velocity loop gains is
required before the position gains can be tuned. Refer to previous sector for how to tune the
velocity PID gains correctly.

The actual PID setting for position loop varies dramatically between different types of BEAR
and their applications. Always get the velocity and id/iq PID gains correct BEFORE spending
time in tuning the position PID. Bad velocity and/or id/iq gains can be the reason why a BEAR
is not outputting enough torque or not tracking goal position, no matter its position gains.

3 - Direct Force Mode
When operating in Direct Force Mode, all of position, velocity and iq can be involved as
explained in section. 2.3, and eventually feeds into the internal Iq loop, thus a well tuned set
of id/iq PID gain is fundamental.

In this mode, BEAR closely simulates a spring-damper system. The Direct Force P gain is
multiplied by position error in rad and the Direct Force D gain is multiplied by velocity error
in rad/s. It’s good to start with D = 0.1P when tuning and any I gain is highly depreciate as it
will likely lead to oscillation.

Depending on the application and desired trajectory to track, iq and velocity can also be part
of the goal command sent to BEAR. In this case, velocity is fused into the loop with the Direct
Force D gain, along with iq based on id/iq PID gain.

See previous sector for information on how to tune the id/iq PID gains.

24

3 SDK

3.1 PyBEAR

In this section, the BEAR
TM

actuator driver Python SDK, called PyBEAR
TM

is introduced. PyBEAR
is compatible with Python3, supported functions are introduced as follows.

3.1.1 Getting Started

Follow these steps to get started with PyBEAR:

0) Serial port access permission Make sure you have the permissions to access the serial
ports on your computer. Adding such permission to your account in Linux can be done with
the following commands in terminal:

sudo chown -R your_username /usr/local

sudo usermod -a -G dialout your_username

1) Unzip After downloading the PyBEAR zip file, unzip the file into a preferred path, and we will
refer to this path as /usr_path from this point forward.

2) Install dependencies PyBEAR requires the NumPy module for scientific computing and Py-
Serial module to access the serial port. Install these two packages in bash as follows(Python
3):

pip3 install numpy pyserial

3) Install PyBEAR Cd into /usr_path/PyBEAR and run the installation(Python 3):

python3 setup.py install

Start enjoying PyBEAR!

3.1.2 Communication With BEAR

To use PyBEAR, import the driver first:

Import Manager from PyBEAR

from pybear import Manager

0) Connect to/Disconnect from BEAR The serial port connection needs to be established
before any command can be transferred to the BEAR actuators that are connected. The
serial port can be connected by creating a serial port object.

Example:

Create a serial port object

A typical port will be /dev/ttyUSB*

The default (and fastest) baud rate is 8000000 bps

bear = Manager.BEAR(port='/dev/ttyUSB0', baudrate=8000000)

25

To disconnect from BEAR(clear existing PyBEAR instance), simply call the close() function:

bear.close()

1) Ping BEAR The ping function can be used to detect if one or multiple BEARs are online, or
to read their error codes. It will return firmware and hardware version information along with
error code if successfully pinged, or ‘None’ for the specific BEAR(s).

Example:

Ping BEAR with ID 1

rtn = bear.ping(1)[0]

if bool(rtn):

pass

else:

print("BEAR 1 not detected.")

2) Read from BEAR The value of configure and status registers of BEAR can be read by calling
“get ” functions.

a) Read from a single register

The functions have a format of:

get_name-of-register(motor_id)

Register value of multiple BEAR actuators can be read at one time, and the function return
format is:

[([data_of_motor1], error_code_of_motor1),

([data_of_motor2], error_code_of_motor2) ...]

Example:

Read torque_enable status from BEAR 1, 2, 3

bear.get_torque_enable(1,2,3)

Read p_gain_position from BEAR 1, 4

bear.get_p_gain_position(1,4)

Read present_velocity from BEAR 2, 3

bear.get_present_velocity(2,3)

If bad connection happens and nothing is heard from the BEAR actuator(s) or the return
packets are damaged, PyBEAR automatically retries the read function, and a warning is
generated:

[PyBEAR | WARNING] :: Read response timed out. Re-sending the same packet.

b) Read from multiple registers

26

This function is previously known as get bulk status/config(), which is verbally mislead-
ing since this is in fact not using bulk communication protocol. get bulk status/config()
is now depreciated.

CAUTION

Will not work for ID, Mode, Baudrate, Watchdog timeout and Torque Enable

CAUTION

Multiple registers on a BEAR can be visited within one frame of communication using:

get_status/config((ID1, reg1, reg2...), (ID2, reg1, reg2 ...) ...)

Multiple target motors can be visited but PyBEAR will go through them one-by-one.

Do not use get status() with config registers, nor to use get config() with status regis-
ters

CAUTION

The function return format is:

[([data_from_motor1], error_code_of_motor1),

([data_from_motor2], error_code_of_motor2)...]

Example:

Read present_iq and present_velocity from BEAR 1 and 2,

and read present_velocity from BEAR 3

bear.get_status((1, 'present_iq', 'present_velocity'),

(2, 'present_iq', 'present_velocity'),

(3, 'present_velocity'))

Read p_gain_position from BEAR 1, 4

bear.get_config((1, 'p_gain_position'), (4, 'p_gain_position'))

If bad connection happens and nothing is heard from the BEAR actuator(s) or the return
packets are damaged, PyBEAR automatically retries the read function, and a warning is
generated:

[PyBEAR | WARNING] :: Read response timed out. Re-sending the same packet.

3) Write to BEAR All configure registers and most status registers can be written to achieve
proper control of BEAR modules by calling “set ” functions. The “set ” functions have no
return.

a) Write to a single register

The functions have a format of:

27

set_name-of-register((motor_id, value))

Format of input should always be one or several instances of “(motor id, value)” when writing
to the same register of multiple BEAR actuators.

Example:

Enable the torque of BEAR 1, 3 and disable BEAR 2

bear.set_torque_enable((1,1),(2,0),(3,1))

set p_gain_velocity on BEAR 1 to 0.02, BEAR 4 to 0.05

bear.set_p_gain_position((1,0.02),(4,0.05))

set goal_position of BEAR 1 to 0, BEAR 3 to 2.5

bear.set_goal_position((1,0),(3,2.5))

b) Write to multiple registers

This function is previously known as set bulk status/config(), which is verbally mislead-
ing since this is in fact not using bulk communication protocol. set bulk status/config()
is now depreciated.

CAUTION

Will not work for ID, Mode, Baudrate, Watchdog timeout and Torque Enable

CAUTION

Multiple registers on a BEAR can be visited within one frame of communication using:

bear.set_status/config((ID1, reg1, data1, reg2, data2...),

(ID2, reg1, data1...) ...)

Multiple target motors can be visited but PyBEAR will go through them one-by-one.

Do not use set status() with config registers, nor to use set config() with status registers

CAUTION

Example:

set goal_position on BEAR 1 to 0, goal_velocity on BEAR 4 to 2

bear.set_status((1, 'goal_position', 0),

(4, 'goal_velocity', 2))

set BEAR 1 p_gain_position to 0.8 and d_gain_position to 0

bear.set_config((1, 'p_gain_position', 0.8, 'd_gain_position', 0))

28

4) Bulk Communication Writing to/reading from multiple status registers of one or more BEAR
actuators within single communication frame can be done with bulk communication. It is
highly recommended to use bulk communication functions when communicating with multiple
BEARs or/and visiting multiple registers, especially the application is preferring very fast
communication.

Bulk communication functions only support status registers and does NOT support
Torque Enable.

CAUTION

Bulk communication functions can respectively read from and write to no more than 16
registers each time.

CAUTION

There are three functions for bulk communication:

Use LIST instead of TUPLE to construct commands when using bulk communication
functions.

CAUTION

a) Read only

bear.bulk_read([ID1, ID2 ...], [reg1, reg2 ...])

Use this function to read the same cluster of status registers from multiple BEARs. The
return has a format as:

[[[data_of_motor1], error_code_of_motor1],

[[data_of_motor2], error_code_of_motor2] ...]

If BULK COMM timed out before getting any reply, the following message will be displayed:

[PyBEAR | WARNING] :: BULK_COMM response timed out. Re-sending the same packet.

If BULK COMM timed out before getting all requested data, the following message will be
displayed:

[PyBEAR | WARNING] :: BULK_COMM return packet timed out. Retrying BULK_COMM...

Either way, bulk communication will retry for up to 3 times. If the communication fails after all
retrial attempts, the function will return None. If there has been no reply at all, the following
message will be displayed:

[PyBEAR | ERROR] :: BULK_COMM no return.

Otherwise, the following message will be displayed:

29

[PyBEAR | ERROR] :: BULK_COMM only get partial return.

If any of the target BEAR returned corrupted data, the returned data of such BEAR will be
None and the corresponding error code will be -99. Note that this error is only associated
with this particular communication attempt, rather than error code of BEAR as described in
item. 6).

b) Write only

bear.bulk_write([ID1, ID2 ...], [reg1, reg2 ...],

[[ID1-data1, ID1-data2 ...], [ID2-data1, ID2-data2 ...]])

Use this function to write to the same cluster of status registers with different values to mul-
tiple BEARs. The function returns True.

a) Read then write

bear.bulk_read_write([ID1, ID2 ...], [registers to read],

[registers to write],

[[ID1-data1, ID1-data2 ...], [ID2-data1, ID2-data2 ...]])

This function will read data from the specified registers then write to the specified registers
with given data. It’s return behavior is the same as bulk read().

Examples:

Set goal_position of BEAR 1, 2, 3 respectively to 0, 1, 2

bear.bulk_write([1, 2, 3], ['goal_position'], [[0], [1], [2]])

Get goal_position and goal velocity of BEAR 1, 2

bear.bulk_read([1, 2], ['goal_position', 'goal_velocity'])

Get winding_temperature of BEAR 1, 2, 3

and write new values to their goal_iq and goal_id

bear.bulk_read_write([1, 2, 3], ['winding_temperature'],

['goal_iq', 'goal_id'], [[1, 0], [2.5, 0], [-0.3, 0]])

5) Configuration vs Status Registers Certain registers are Configuration Registers which
are persistent after shutdown, and need to be saved once they are changed, otherwise re-
stored to last saved value after power-cycle. Whereas Status Registers are non-persistent
(volatile) and will be restored to default values when the BEAR is powered on and get popu-
lated with corresponding real time status of BEAR.

After updating Configuration Registers, the values can be saved with “save config(motor id)”
function. An example of how to set the ID of a new BEAR module:

Set the ID of motor (1) (default) to (4)

bear.set_id((1,4))

Save the configuration using the new motor ID

bear.save_config(4)

30

“save config” currently only works for a single ID. The following command with NOT
work:

bear.save_config(1,2,3)

CAUTION

Do not save configurations when the motor is enabled. The motor may not respond
when it is writing flash memory.

WARNING

Configuration Registers include:

• Motor ID

• Operation Mode

• Baud Rate

• Home offset

• Limits (position, velocity, current, voltage, temperature)

• PID gains

Status Registers include:

• Torque enable/disable

• Goal position/velocity/current

• Present position/velocity/current/voltage/temperature

Refer to Table.4 for a full list of supported registers.

6) Error Code All read functions will return with error codes, with the requested data and
error code of each BEAR form a <tuple>.

Example:

Get present position of BEAR 1

bear.get_present_position(1)

-> return: [([0.0855], 128)]

0.0855 is the present position and 128 is the error code

Error code 128 is ’Normal’. Refer to table.5 for detailed meanings of the error code.

7) Timeout The default communication timeout as well as the bulk communication timeout are
set to be 0.001s(1ms). When PyBEAR displays these messages:

31

[PyBEAR | WARNING] :: Read response timed out. Re-sending the same packet.

[PyBEAR | WARNING] :: BULK_COMM response timed out. Re-sending the same packet.

[PyBEAR | WARNING] :: BULK_COMM return packet timed out. Retrying BULK_COMM...

it is most likely that there is a faulty signal connection or the target is offline. However, if you
believe that your hardware setup is all normal, or simply for debug reasons, you can change
the timeout settings of existing PyBEAR instance:

Normal communication timeout:

bear.timeout = new_value

Bulk communication timeout:

bear.bulk_timeout = new_value

or specify values when instancing PyBEAR:

Create a serial port object at /dev/ttyUSB0 with baud rate of 8Mbps

timeout set to 5ms and bulk_timeout set to 3ms

bear = Manager.BEAR(port='/dev/ttyUSB0', baudrate=8000000,

timeout=0.005, bulk_timeout=0.003)

3.2 LabBEAR

In this section, the BEAR
TM

actuator driver LabVIEW SDK, called LabBEAR
TM

is introduced as
follows.

3.2.1 Getting Started

Follow these steps to get started with LabBEAR:

0) Check your LabVIEW version LabBEAR requires LabVIEW 2016 or higher versions. So
please upgrade your LabVIEW if you have earlier versions.

1) Download Download LabBEAR SDK zip package and unzip it into a preferred work directory.

2) Install dependencies LabBEAR requires NI VISA module to communicate with BEAR via
USB ports on your computer. The installation can easily be down with NI Package Manager.

Start enjoying LabBEAR!

3.2.2 Communication With BEAR

0) Open a VISA port Use VISA Configure Serial Port followed by VISA Set I/O Buffer Size and
VISA Flush I/O Buffer to properly establish communication with your BEAR via USB.

Find VISA Configure Serial Port subVI under: Instrument I/O → Serial as shown in figure
11.

Then Find VISA Set I/O Buffer Size and VISA Flush I/O Buffer under: Instrument I/O→ VISA
→ Advanced→ Bus Specific as shown in figure 12.

32

Figure 11: VISA Configure Serial Port

Figure 12: VISA Set I/O Buffer Size and Flush I/O Buffer

Connect the above subVIs as shown in figure 13, connect controls for VISA resource name
and baud rate on VISA Configure Serial Port and specify 200ms for timeout and FALSE for
termination char. Pass on the VISA resource name and error to VISA Set I/O Buffer Size and

33

specify an I/O Receive Buffer of 10000 bytes. Finally pass on the VISA resource name and
error to VISA Flush I/O Buffer, and VISA resource name and error lines are ready for use.

Note that if the com port name and baud rate is predetermined, you can use constants
instead of controls for them. Otherwise, specify the corresponding port name and baud rate
in the front panel as shown in the example in figure 13.

Figure 13: Open a VISA port to communicate with BEAR.

1) Read from BEAR The value of configure and status registers of BEAR can be read by
respectively using the Read Config and Read Stat subVIs, as shown in figure 14.

Figure 14: Read from BEAR.

34

To use the read subVIs, connect VISA resource and Error lines to corresponding terminals,
then specify the ID of the target BEAR as well as the address of the target registers to read
from. This can be done by creating controls from the corresponding terminals. Multiple
registers can be read at once as shown in figure 14. Both subVIs return the requested data
as well as error code from the target BEAR.

2) Write to BEAR You can write to supported configure and status registers by respectively
using the Write Config and Write Stat subVIs, as shown in figure 15.

Figure 15: Write to BEAR.

To use the write subVIs, connect VISA resource and Error lines to corresponding terminals,
then specify the ID of the target BEAR as well as the address and value of the target registers
to write to. This can be done by creating controls from the corresponding terminals. Multiple
registers can be written at once as shown in figure 15.

Configuration vs Status Registers
Certain registers are Configuration Registers which are persistent after shutdown, and need
to be saved once they are changed. Status Registers are non-persistent (volatile) and will
be restored to default values when the BEAR is powered on and get populated with corre-
sponding real time status of BEAR.

After updating Configuration Registers, the values can be saved with Save Config subVI as
shown in figure 16.

35

Do not save configurations when the motor is enabled. The motor may not respond
when it is writing flash memory.

WARNING

Figure 16: Save configuration registers.

Configuration Registers include:

• Motor ID

• Operation Mode

• Baud Rate

• Home offset

• Limits (position, velocity, current, voltage, temperature)

• PID gains

Status Registers include:

• Torque enable/disable

• Goal position/velocity/current

• Present position/velocity/current/voltage/temperature

Refer to Table.4 for a full list of supported registers.

3) Bulk Communication Writing to/reading from multiple status registers of one or more BEAR
actuators can be done with the Bulk Stat subVI conventionally all at once. Use this function
as shown in figure 17.

36

Bulk communication with Bulk Stat subVI can only be used with supported status
registers.

CAUTION

Figure 17: Bulk read/write with status registers.

4) Examples You can find the following examples in the LabBEAR package:

• SIMPLE Read Stat A simple example of reading status registers from one BEAR.

• SIMPLE Read Config A simple example of reading configuration registers from one
BEAR.

• SIMPLE Write Stat A simple example of writing data to status registers on one BEAR.

• SIMPLE Write Config A simple example of writing data to configuration registers on
one BEAR.

• SIMPLE Bulk Stat A simple example of bulk communication.

5) Tuning Interface: RS485 Data Ctrl When it comes tuning or debugging your BEAR using
LabVIEW, the RS485 Data Ctrl VI is a very handy tool. The front panel of Data Ctrl is as
shown in figure 18, and it is introduced section by section as below.

a. Port setting Configure the port settings here to match your BEAR before you run the VI.

b. ID, Enable and Error You can chain multiple BEARs and tune them one by one with
the ID setting. You can change the ID while the VI is running. Use the Enable and
DISABLE button to enable/disable the current BEAR and use the ESTOP button to put
the current BEAR into E-stop mode. Use the STOP button to stop the VI. The error
code of the current BEAR is displayed in the ERROR indicator and Error count indicator
displays how many times an error has accrued since the VI started.

c. Mode, Limits and Goals Use this section to write mode, limits and goals to the current
connected BEAR, and you the SAVE button to save the current config register values.

37

Figure 18: The front panel of Data Ctrl VI.

The VI may freeze for a brief second when saving the config registers.

CAUTION

d. PID setting Use this section to change the PID settings of the current connected BEAR.

e. Real-time Status Status of the current connected BEAR is plotted in real-time in this
section, including Excitation Current id, Torque Current iq, Position Theta, Velocity
Theta dot, Temperatures and Present Supply Voltage Vbus.

f. Read Config Click the Read Config button to read all config registers once. Returned
data will be displayed in the indicator. You can also change specific config settings and
hit Write Config button to update the current connected BEAR.

g. Chirp Signal A chirp, sinusoidal or 2-state(square) wave can be sent to the current
connected BEAR for tuning purpose. Define desired wave to send in the controls, and it
can be sent as goal torque, goal velocity or goal position by choosing the corresponding
selection. Click on the corresponding green square button to start sending the wave.
This function is extremely helpful if a BEAR needs to be fine-tuned for a certain band of
response frequency.

38

4 Version History

— Update Log: —

0.1.2 Complete Python section, Introduction now contains everything about KB02

0.1.3 Add LabBEAR

0.1.4 Add Warning section in Intro

0.1.5 Modified KT value and torque specs.

0.1.6 Add details on PB02; Add connection instruction.

0.2.0 A couple of updates:

a. Move connection, PID tuning and control table all into a new section: Using BEAR.

b. Add units to regs and correct reg value range.

c. Add more details to PID tuning.

d. Update file structure.

0.2.1 Update Ping function output: it outputs [([List of firmware and hardware versions], error), ...]

0.2.2 Update Specification

0.2.3 Officially support BULK COMM in PyBEAR.

a. Add detailed description and examples of related functions.

b. Depreciate get/set bulk status/config() as these are in fact not bulk comm and replace with
get/set status/config().

c. User can specify timeout and bulk timeout when instancing pybear.

0.2.4 Update LabBEAR to 2.1: Update Introduction section to include the usage of ESTOP

0.2.5 Update PB02 Spec figure and signal port access instruction

0.2.6 Small Bug fix:

a. Fix typo in PyBEAR multi-communication.

b. Fix daisy chain fig missing Estop wire.

0.2.7 Minor improvements.

0.2.8 Update recommended current loop PID gains.

0.2.9 Fix a wrong statement about velocity in DF mode

0.3.1 Fix a wrong labeling about U2B pinout

0.3.2 Add recommended current loop PID gains for Kodiak BEAR V1(CB01) and Koala BEAR
Muscle Build V1(KBMB01), and attach version history at the end of manual. Add Kodiak voltage
range. Officially stopped support for python2, Section 3. Update BEAR spec table as well as

39

introduction to include KBMB01 and CB01. (CB01 related information only available to existing
customers)

0.3.3 Modify Figure 6: USB2BEAR pin-out and switches for better understanding.

40

	Introduction
	About This Manual
	Warnings
	Know Your BEAR

	Using BEAR
	Power & Signal
	Communication
	Operating Modes
	PID Tunning

	SDK
	PyBEAR
	LabBEAR

	Version History

